sonare

The 10 practical steps to model and
design a complex SoC

White Paper

Author: Piyush Singh
Date: 10 February 2022

©2022 Sonderel. All rights reserved.

The information contained in this document represents the current view of Sondrel Ltd on the issues discussed as
of the date of publication. The content of this document is furnished for information only, is subject to change, and
should not be construed as a commitment by Sondrel Ltd. Sondrel Ltd assumes no responsibility or liability for
any errors, omissions, or inaccuracies that may appear in this document. This document is for informational
purposes only. Sondrel MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

The 10 practical steps to model and design a complex SoC SOndre|

Content
OV BIVIBW ...ttt ettt ettt a et e e oo a bt oo 4o h bt e o4k b et e ook b et e ook b et e oo am b et e e e am b et e e e s be e e e e anbe e e e e anbneeeeannns 3
SONAIEI'S NEW T00]eiiiee ettt e et e e st bt e e st e e e e sbreeeeaae 3
HOW an ASIC iS MOAEIIEA. ..ottt e e e e e e 4
ASIC from Abstract View t0 SPECITICALIONcciieiiiiiiiiiee e 4
Modelling USES aNd A0VANTAGESuuuuiieeeiiiiciiieiie e e e e s sttt e e e e e s s ssbr e e e e e e e s e ssnbrareeeeeesasnsnraneeeeeeesaannnes 6
Various types of MOUEIIINGoceviiiiiie e e e e e e s st r e e e e e e e s anrreneees 6
Why do we need performance eXPloration............ooicuuiiieeieeiiiiiiieie e e s e e e e e s s e e e e e e e s nnnaenees 7
10 Steps t0 ArChItECIUIE SUCCESS ...cvviiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeaeeeaeeeaesseeeesesesesssssesssssssssssssssssssnnnnnnes 8
StEP 1: SYSEM Ol ANAIYSISeeiiiiiiiie ittt ettt e et e e e rab e e e e snbne e e e annnes 9
StEP 2: ProCeSSING ANAIYSISeiiiiiiiiie ittt e bbb e e e e e anes 9
SEEP 31 TP ANAIYSIS et e et e et e e e arreeeeaae 10
Step 4: Data INterchange ANAIYSISueeiiiiiiie ettt e e s sba e e e aae 10
Step 5: Workflow Model (TranSaction@l)cooiiiiiiiiiiieeiiiieee et 11
Step 6: Simulate to VErify PrOCESSINGeeiiiiiiiii ittt e e e sbe e e e anes 11
Step 7: Quantify Data INtErChANGEuuuiiiiiiiii s 12
Step 8: Data PhysSical EXCNANQEuuuuiiiiiiiiiiii s 12
Step 9: IMPIeMENt INTEICONNECTuiiiiiiiiiiii s 13
Step 10: OPtiMIZE PEIrfOMMANCEuuiiiiiiiiiiiii s 13

White Paper Page 2 of 14

The 10 practical steps to model and design a complex SoC Sondre|

Overview

It is important to model an SoC well in advance to avoid costly over design or insufficient
performance and to create a hardware emulate on which representative end user applications
can be run. Detailed architectural modelling provides reasonable estimates of the performance,
power, memory resources, and the NoC (Network on Chip) configuration that will be required
along with an indicative size of the die and what it is likely to cost. With this information, a
customer can decide whether to proceed with the design, if it needs to be adjusted or even
cancelled. Sondrel™ has created unique, proprietary modelling flow software, initially for use
with Arm® and Synopsys® tools, that dramatically reduces the time to do this from months to
a few days, which Sondrel claims to be an industry first for a services organisation. This article
discusses how modelling is used in the ten steps of modelling and designing a complex SoC
architecture.

Sondrel’s new tool

Modelling tools are available as standard items from leading vendors but what Sondrel does
is to wrap the vendor’s offerings with its own custom flow. The vendor’s tools are limited in
terms of automation and ways that they can be adjusted but Sondrel’s new modelling flow tool
adds a framework with a much greater number of settings that can be tweaked by the Sondrel
Systems Architect who is working on the project. This is added using hooks into the vendor’s
software that are provided for this very purpose. Typically, users create customisation
wrappers that are specific to the designs that they work on if not already present in a library of
an ever-growing number of such wrappers. However, because Sondrel works on a wide variety
of projects for a plethora of customers, it has defined a methodology and flows that are unique
and broader in scope so that they can be used for almost any architectural exploration project.

The biggest benefit of the modelling flow’s dramatic reduction in the time it takes to create a
model and run simulations, is that Sondrel can provide customers with data on the likely
performance of a proposed ASIC in a matter of few days to determine if the architecture
proposed gives an appropriate set of numbers. If not, it is very easy and quick to run variants
of the model simply by changing the settings of the existing model to decide which is the best
one for the customer’s application use case. Running each variation takes anywhere between
a few minutes to an hour, so the whole process of model creation and running variants can still
be done in a few days.

For comparison, converging on a candidate architecture without Sondrel’s modelling flow tool
would rely heavily on static spreadsheet modelling which would take several weeks and then
each variant of the model to evaluate different architectures would each take weeks as each
variant model would have to be created from scratch. Overall, that could total a number of
months.

White Paper Page 3 of 14

The 10 practical steps to model and design a complex SoC Somdre|

How an ASIC is modelled

Multiple 3 party IP Components
« CPU, GPU, DSP, SystemIP
» Custom Hardware

* Multiple embedded processors
* Multi-core clusters

+ Off-chip Storage e.g. LPDDR e
» Performance and Power implications Peripherals

. Stsagdard Peripheral Interfaces e.g. MIPI, 12C,

* Multiple Operating Modes
* e.g. MIPI-RX Global Shutter vs Rolling Shutter
* e.g. output via Ethernet, PCIE, MIPI-TX

Most chips are created from compute elements such as CPUs, GPUs, DSPs and system IP
along with custom hardware, IP and software. Off chip DDR memory storage is usually
required as well. There are also multiple operating modes as determined by the end user
application, i.e., settings within those hardware blocks that modify what they do. This can
have implications on the memory traffic and access patterns that they initiate that go to the
DDR controller via the NoC.

ASIC from Abstract view to Specification

= ATypical ASIC consists of a set of application level (i a Terst Target

tasks : ‘

« Tasks need to be mapped to IP via HW/SW
partitioning

| Task2

« Aset of IP: Processing Systems, Peripherals, = G _;)
Interfaces, Accelerators, Caches

« Storage: On and Off Chip

= Interconnect Fabric: Bus, NoC

| Taskn

» Constraints
« Performance requirements
* Process Node, Package etc
» Validate Specification BEFORE implementation
starts
* Modelling can help achieve this

White Paper Page 4 of 14

The 10 practical steps to model and design a complex SoC Sondre|

This starts as a set of application tasks, i.e., exactly what is it that the ASIC will have to do
which are on the diagram of the abstract view (top right) as grey circles. These run-on
initiators (blue circles) that are representations of hardware blocks that generate memory
traffic. Targets (light orange) receive the memory traffic and do something with it. These are
memory devices either on the die or off-chip like DDR.

There are a number of steps to convert an abstract view to a specification as shown in the
bottom right of the illustration as a schematic diagram. This requires a modelling
methodology that refines the abstract view to create a specification.

Interconnect fabric

The wiring to connect all IPs. Unique for every SoC
Specification is dynamic. Cannot be finalized

sonarel

before layout ISP | Camera I/F | Ef;;;% Secuy
. ystem
Global Regch (.all f_wer chlp?) . (24-bit) GPU
Design significantly impacted by floor planning 1 GHz
Timing affected by pipelining often refined several Video (600 GFLOPS) Sy
times during implementation 22GHz
gimp (H.265) NoC
Many Interfaces / parameters 8 [=
. N Quad-Core 8
* Most connected component in an ASIC ¥ = CotexA2 | [5
x5 NPU NPU 226z || R Pyl
Interconnect fabric have evolved from simple busses to ||& § 2GHz 2 GHz 1= j:
more scalable complex Network-On-Chips = (36.86 TOPS) (36.86 TOPS) §
ad-C.
- EDA technology to generate functionally correct ||~ gggeéﬁ%
interconnect has significantly improved < =hE

Both Interconnect and Memory Sub-system matter for
performance

Modelling can help validate performance early.

Central to all of this is the interconnect fabric — effectively the wiring — that connects all the
compute and memory elements on the SoC together.

What is interesting is that it has global reach but not yet fixed shape in advance of the start of
the design. Its shape is influenced by the floor plan and layout of all the blocks on the SoC.
Because of that we have a different set of restrictions imposed on the NoC, one of which is
the timing requirement because it does not have a fixed shape and can therefore span long
distances from one end of the die to the other which can cause issues when it comes to
timing closure. Because of this, the specification of the NoC is not completely finalised until
much later in the design flow when the floor plan is actually realised. At that point,

information from the floor plan is fed back into the NoC design in order to refine it as an
iterative process. Modelling enables us to have a starting point for the NoC design.

White Paper Page 5 of 14

The 10 practical steps to model and design a complex SoC

sondrel

Modelling uses and advantages

. There are many reasons to use models
Optimization of architecture
Specification Validation
Performance estimation

Power estimation
* Throughput limitations
SW Development. HW/SW Co-design
System Integration

Modelllng of interactions with external
objects

N

SOCRATES

Custom IP

Synopsys

+ The choice of Modelling strategy is critical to

s
success =

JavaS()an

Speed / Accuracy / Visibility
» Tools Support
License costs

139 W

databases

=

Excel

Reporting

Modelling stack relies on many tools and
technologies

Modelling is used to come up with an estimate of what the architecture is going to be and
play what if scenarios to work out the best configuration parameters of that architecture to
arrive at a validated specification that summaries what the power and performance
requirement will be. This can also be used for early software development by customers as
they have something to try the software on, but it has to be born in mind that it does not have
timing information so it does not show how fast the answers are computed.

As can be seen in the graphic on the right, the modelling stack requires several technologies
to come together. In the middle are the EDA tools and around them Sondrel wraps its own
custom tool and methodology on to Synopsys tools to create an all-encompassing
environment of the modelling solution.

Various types of modelling

At the lowest level is Dataflow modelling which are programmes that are written in
MATLAB, Python or C/C++ that are intended to capture the steps of an algorithm and what
are the data processing pipelines to take data through to an answer but they do not contain
any timing information.

Loosely timed or fast models are for early software development as they run executable
code but they are not appropriate for architecture exploration because they do not have strict
definition of timing between processes.

Most useful are the Approximately Timed models with a refined version being the Fast
Timed models that are much better because they contain transaction level tracing to trace
the timing of transactions and every transfer in the level of detail required to do architectural
exploration and analysis.

White Paper Page 6 of 14

The 10 practical steps to model and design a complex SoC SOndre|

At the highest, most detailed level are the Cycle Accurate RTL simulation models but this
is not appropriate for architectural exploration as it is too slow as they model all signals at
every clock event.

Why do we need performance exploration

+ IP blocks are typically verified in isolation
» Ignores external limitations

IP Develop / Test

* IP Integration in chips is sometimes not straightforward
» Master/Slave interfaces not matching

+ Performance will be impacted by other IP
» Clocking strategy

Shared Interconnect Fabric IP Use in SoC

Shared Memory

Complex memory timing and interactions

Interface adaptation

+ Performance of the chip may be lower than expected
* Less than the sum of the parts
* Increasingly difficult to predict and verify

Performance of an interconnect is defined by whether a system usin?| this NoC
behaves correctly or not. i.e. Will a displayed video image freeze, the loud
speaker click, or the embedded web-browser be too slow™

Typically, IP blocks are developed in isolation (top right illustration) but when a block is
integrated into an SoC, there are other hardware blocks that also generate their own traffic
profile and pattern (bottom right illustration). These impose a restriction on interconnect
structure and the resources of the memory components. Performance exploration is used to
decide on an appropriate size for the interconnects and memory subsystem by modelling the
memory traffic patterns that are generated by all the subsystems as if they were running on
the real system to a reasonable approximation. This enables the impact on the memory
controller to be seen well in advance of the hardware or software being available which gives
an indication of what the performance of the system will be well in advance that can help with

the design and further downstream flows as the work progresses.

White Paper Page 7 of 14

The 10 practical steps to model and design a complex SoC SOndre|

10 Steps to Architecture Success
The complex task of modelling becomes manageable by breaking it into stages and then

+ Break the problem into stages
* Divide and Conquer methodology

o SpreadSheets
ratwonng) \Word Documents

Standards
Specifications

* Increasing detail at each stage
* Reduced options to consider

+ Use Modelling to answer questions
* Each Model phase answers specific issues

« Focus resources as process progresses
* Avoid wasted simulation time
* Reduce data set to be analyzed
* Reduce simulation size / count to offset slow down

Workilow
Model

Data
Esxchange

poads uopepuis |

=
2
o
(2]
o

3

=
o

=
3 -

« Consider issues in logical order
» Simplifies cause and effect analysis
* Reduces iterations required

Modelling

Define
Storage

Design
nteroonnect

+ lterate as soon as required
+ Identify issues early and fix before advancing
* Reduces wasted design effort

Refine /
Optimize

« Stages trade off accuracy versus speed

refining each stage with greater level of detail which can reduce the number of options that
have to be considered. Each model phase enables this to be done to hone the focus as the
increasing level of detail enables drill down to specific issues. This elimination process
ensures that resources such as simulation time are not wasted on what would be dead ends
and instead used on the reduced data set. At all times, issues must be considered in logical
order so that cause and effect is clear and issues are fixed before advancing to the next
iteration to reduce wasted design effort

The first four steps can be done on paper or on a spreadsheet by calculation to try and
understand what are the input/output dataflows into the SoC and what their characteristics

are.

The last six steps are simulation based where software models are constructed and
simulations run to generate results that inform about the system.

White Paper Page 8 of 14

The 10 practical steps to model and design a complex SoC Somdre|

Step 1: System Ol Analysis

* Data Content
* What does it represent
= What will we do with it

Sample Rate
Resolution
channels

FNET/ HEML/
op Frarme Rale

Resolution
Colaur Dupth

e u:
FCl-Sla
,

SD Associalion

« Applicable Standards
« Data Structure
+ MPEG etc
» Data Interfaces
+ DP, USB3, ENET etc

k. note Cam
Encoding Farmat

Resolution
Colour depth

* Determine 10 Constraints Frama Rate
* Rates / Burstiness
* Buffer requirements
* Latency
« Timing
* Formatting

This determines what the data is and what are the 1/O constraints such as burstiness,
latency, timing, and data formatting to decide on the buffer requirements that is captured in a
spreadsheet.

Step 2: Processing Analysis

* Break the processing down into sub-tasks
« Divide and Conquer Methodology
* Group common pieces of functionality

« Define processing sequences
« \Virtual Pipelines
= Key functionality
* Operating modes
« Constraints

« Define control mechanisms
« SW/HW state machines
* Flow control
« Src / Dest synchronization etc

* This can be hierarchical
* Refine each stage in isolation within constraints

This breaks the processing down into sub-tasks and groups parts of the SoC into common
pieces of functionality. In the illustration, MPEG decode and image analysis are parts of an
algorithm which needs to be performed on input data to generate the output.

White Paper Page 9 of 14

The 10 practical steps to model and design a complex SoC Somdre|

Step 3: IP Analysis

* Map Functions onto possible Implementations
* Third party IP
* Custom IP
« HW/FW/SW

» Key Considerations
* Performance E E E E

Cost T

Area

Power Estimation

Latency / Throughput

Interface requirements

This step identifies what third party IP blocks will be required to perform the steps of an
algorithm and how much memory and compute power they require from their datasheets that
can be fed into the modelling environment to give a more accurate representation of what all
the IP blocks will be doing.

Step 4: Data Interchange Analysis

* How will data be exchanged ?
* Local Buffers
+ System Memory
- DMA

* What size buffers are required ?
* Latency
* Feedback

« Interfaces
» System Bus protocol
* |Interface Widths / rates / burstiness

* Alignments
* Natural data structure alignments

This covers the method of exchanging data in between parts of an algorithm such as on-chip
SRAM or external DDR memory as well as FIFO which are small spaces of memory on chip.
The decision between SRAM and DDR depends on the size of the data and how often it
needs to be accessed with large pieces of data going to external memory and small pieces of
data to SRAM or FIFO.

White Paper Page 10 of 14

The 10 practical steps to model and design a complex SoC SOmdre|

Step 5: Workflow Model (Transactional)

» Create TASK objects to model IP
* Data Throughput
« Latency
* 1O Timing (duration / start time)

Video
Caplure

» Specify Transactions between tasks.
» Transaction can be data or control
* Represented by size / time

Capture

A

» Specify channels between tasks el

Processing Size

* Virtual data / control paths terations Utilizaten
» Can represent buffers for size analysis

Now a software representation is created of what the different stages are. The first three blue
blocks of the illustration in step 4, which form the conceptual view of the algorithm, are
translated into the green boxes that represent the actual simulation objects and correspond
to the different software stages of the algorithm. These require settings such as latency and
processing cycles, and are joined by objects known as channels that indicate what the

sequencing is.

Step 6: Simulate to verify processing

Idealistic Simulation
All IP in perfect environment
Regulated by processing and 10 Size / timing

VT T
[

Interconnect Tasks using workflow | T
Infinite interconnect paths o 08 64 04 44 0 A OB N0Ra 0150 A U0 NORA N R AN |
No Contention u’.‘.‘. e e e A S i e e] S5

Channels monitor actual usage
Can use this to dimension HW

Simulate to verify throughput
Identify traffic bursts / contention
When Data Required / Produced
Model traffic timing / IO duration
Based on width and clock rate

Compute traffic statistics | ir
Map requirements to functionality 1 i
e.g. Frame Rate
Total transfers per frame period
Estimate buffer requirements
Estimate latency

[=) 5] =]

{2 et 2

[T

iy e e

Having constructed all the simulation objects for the full algorithm, simulations can be run to
see if the right sequencing of the algorithm has been captured. This can be visually checked
as per bottom right image by using the visualisation tools that are available in the modelling

environment.

White Paper Page 11 of 14

The 10 practical steps to model and design a complex SoC SOndre|

Step 7: Quantify Data Interchange

+ Next step is to consider interface timing
* Simulate “Unmapped” with timing
« Blocks 10 is independent
+ Indicates Total and peak Bandwidth

+ Define communication domains
* Domains operate independently

+ Used to model independent HW Entities — o wven ﬁ_,
. FIFOs Demux Caplure Dewmde
+ Shared Memory
* Model domain as VPU + memory v L J
- Assign each channel to a domain
* Mapping is applied at simulation time

VPU
* Domain may have many channels ﬂ
+ Evaluate each domain independently ﬂ ﬂ
* Peak / Average bandwidth requirements £IFQ RAM

* Contention between channels
* Latency requirements

This is the next step on from the green blocks in step 5 to converge onto models of the
hardware platform with VPUs (Virtual Processor Units) that will run the software of step 5,
each with their own local memory. Here the interface timing can be considered and
communication domains defined with their assigned channels and evaluated. It also enables
the configuration of the VPUs to be verified as correct.

Step 8: Data Physical Exchange

* Add memory HW simulation
* Refine Domain Models
= Assign Correct memory types

+ Extend dotmains with multiple ports for
etc

« Ideal 1 per client

Evaluate CORE memory performance
» Ignoring Interconnect Fabric Contention "

* DRAM controllers buffer multiple
transactions

Task Task

« Evaluate interleaving / prioritization etc Mult Port

SORAM
Controller

prebe

+ Detect issues for memory controllers
» Address alignment SDRAM
+ Burst size
» Masked Operations

SORAM

Here the memory that was available to each VPU is now remodelled as being connected to
external memory via a common memory controller. This gives a more accurate
representation of the connectivity of all the VPUs and memories in the final system.

White Paper Page 12 of 14

The 10 practical steps to model and design a complex SoC SOndre|

Step 9: Implement Interconnect

* Implement interconnect
* Include estimated timing (pipelining)
* Evaluate impacts on performance
« Latency / Bandwidth

. Typlcally ARM NIC, Arteris NoC Task Task Task
Configured using Generator 1
* Using data from analysis
+ Generate FT Simulation model
» Import Model into PA Ultra

+ Map tasks to FT transactors / VPU'’s
* 1 per physical interface

Interxomect Fabric

L H |

Mult Port .
SORAM

Confroller

* Re-simulate using workflow
+ Slower Simulation
» Use optimized workflow set
« Verify performance and margin
» Adapt Interconnect to meet performance
+ |terate to previous stages as required

Now the interconnect fabric is added and instead of the direct connections between the
VPUs and the memory controller, these are replaced by the interconnect fabric and the
effects of this on the timing and performance evaluated. The interconnect fabric is then
adjusted to meet the performance required with previous stages being redone to achieve the
required results.

Step 10: Optimize Performance

Many further optimizations that can be evaluated using a Model

= Optimize memory architecture
= Partition memory
* Reduce active power
» Additional Local Buffering
+ Reduce Latency

*Effect of splitting memory

= Physical Memory Fragmentation *Long paths = big pipeline delay
. *Physically local memory can
» Reduce interconnect latency reduce latency and power
dissipation

« Prioritization

» Ensure critical tasks not delayed
= Burst Sizes

« Performance / latency tuning

» Data Alignment
» Avoid expensive memory access clashes

White Paper Page 13 of 14

The 10 practical steps to model and design a complex SoC SOndre|

Now, with a good working model, by simply adjusting settings, various simulations can be run
to identify bottlenecks, what constraints there are in the system, and which parameters
should be adjusted to improve the throughput and reduce the latency of the SoC. These take
a few minutes to an hour to run so that it is very easy and quick to test variants.

Further information about Sondrel can be found at www.sondrel.com

Sondrel is a trademark of Sondrel Limited

Arm is registered trademark of Arm limited

Synopsys is a registered trademark of Synopsys, Inc.
All other trademarks are acknowledged.

White Paper Page 14 of 14

http://www.sondrel.com/

