

The 10 practical steps to model and

design a complex SoC

White Paper

©2022 Sondrel. All rights reserved.

The information contained in this document represents the current view of Sondrel Ltd on the issues discussed as

of the date of publication. The content of this document is furnished for information only, is subject to change, and

should not be construed as a commitment by Sondrel Ltd. Sondrel Ltd assumes no responsibility or liability for

any errors, omissions, or inaccuracies that may appear in this document. This document is for informational

purposes only. Sondrel MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Author: Piyush Singh

Date: 10 February 2022

The 10 practical steps to model and design a complex SoC

White Paper Page 2 of 14

Content

Overview .. 3

Sondrel’s new tool ... 3

How an ASIC is modelled .. 4

ASIC from Abstract view to Specification .. 4

Modelling uses and advantages .. 6

Various types of modelling .. 6

Why do we need performance exploration .. 7

10 Steps to Architecture Success ... 8

Step 1: System OI Analysis ... 9

Step 2: Processing Analysis .. 9

Step 3: IP Analysis .. 10

Step 4: Data Interchange Analysis .. 10

Step 5: Workflow Model (Transactional) ... 11

Step 6: Simulate to verify processing .. 11

Step 7: Quantify Data Interchange .. 12

Step 8: Data Physical Exchange ... 12

Step 9: Implement Interconnect .. 13

Step 10: Optimize Performance .. 13

The 10 practical steps to model and design a complex SoC

White Paper Page 3 of 14

Overview

It is important to model an SoC well in advance to avoid costly over design or insufficient
performance and to create a hardware emulate on which representative end user applications
can be run. Detailed architectural modelling provides reasonable estimates of the performance,
power, memory resources, and the NoC (Network on Chip) configuration that will be required
along with an indicative size of the die and what it is likely to cost. With this information, a
customer can decide whether to proceed with the design, if it needs to be adjusted or even
cancelled. Sondrel™ has created unique, proprietary modelling flow software, initially for use
with Arm® and Synopsys® tools, that dramatically reduces the time to do this from months to
a few days, which Sondrel claims to be an industry first for a services organisation. This article
discusses how modelling is used in the ten steps of modelling and designing a complex SoC
architecture.

Sondrel’s new tool

Modelling tools are available as standard items from leading vendors but what Sondrel does
is to wrap the vendor’s offerings with its own custom flow. The vendor’s tools are limited in
terms of automation and ways that they can be adjusted but Sondrel’s new modelling flow tool
adds a framework with a much greater number of settings that can be tweaked by the Sondrel
Systems Architect who is working on the project. This is added using hooks into the vendor’s
software that are provided for this very purpose. Typically, users create customisation
wrappers that are specific to the designs that they work on if not already present in a library of
an ever-growing number of such wrappers. However, because Sondrel works on a wide variety
of projects for a plethora of customers, it has defined a methodology and flows that are unique
and broader in scope so that they can be used for almost any architectural exploration project.

The biggest benefit of the modelling flow’s dramatic reduction in the time it takes to create a
model and run simulations, is that Sondrel can provide customers with data on the likely
performance of a proposed ASIC in a matter of few days to determine if the architecture
proposed gives an appropriate set of numbers. If not, it is very easy and quick to run variants
of the model simply by changing the settings of the existing model to decide which is the best
one for the customer’s application use case. Running each variation takes anywhere between
a few minutes to an hour, so the whole process of model creation and running variants can still
be done in a few days.

For comparison, converging on a candidate architecture without Sondrel’s modelling flow tool
would rely heavily on static spreadsheet modelling which would take several weeks and then
each variant of the model to evaluate different architectures would each take weeks as each
variant model would have to be created from scratch. Overall, that could total a number of
months.

The 10 practical steps to model and design a complex SoC

White Paper Page 4 of 14

How an ASIC is modelled

Most chips are created from compute elements such as CPUs, GPUs, DSPs and system IP
along with custom hardware, IP and software. Off chip DDR memory storage is usually
required as well. There are also multiple operating modes as determined by the end user
application, i.e., settings within those hardware blocks that modify what they do. This can
have implications on the memory traffic and access patterns that they initiate that go to the
DDR controller via the NoC.

ASIC from Abstract view to Specification

The 10 practical steps to model and design a complex SoC

White Paper Page 5 of 14

This starts as a set of application tasks, i.e., exactly what is it that the ASIC will have to do
which are on the diagram of the abstract view (top right) as grey circles. These run-on
initiators (blue circles) that are representations of hardware blocks that generate memory
traffic. Targets (light orange) receive the memory traffic and do something with it. These are
memory devices either on the die or off-chip like DDR.

There are a number of steps to convert an abstract view to a specification as shown in the
bottom right of the illustration as a schematic diagram. This requires a modelling
methodology that refines the abstract view to create a specification.

Central to all of this is the interconnect fabric – effectively the wiring – that connects all the
compute and memory elements on the SoC together.

What is interesting is that it has global reach but not yet fixed shape in advance of the start of
the design. Its shape is influenced by the floor plan and layout of all the blocks on the SoC.
Because of that we have a different set of restrictions imposed on the NoC, one of which is
the timing requirement because it does not have a fixed shape and can therefore span long
distances from one end of the die to the other which can cause issues when it comes to
timing closure. Because of this, the specification of the NoC is not completely finalised until
much later in the design flow when the floor plan is actually realised. At that point,
information from the floor plan is fed back into the NoC design in order to refine it as an
iterative process. Modelling enables us to have a starting point for the NoC design.

The 10 practical steps to model and design a complex SoC

White Paper Page 6 of 14

Modelling uses and advantages

Modelling is used to come up with an estimate of what the architecture is going to be and
play what if scenarios to work out the best configuration parameters of that architecture to
arrive at a validated specification that summaries what the power and performance
requirement will be. This can also be used for early software development by customers as
they have something to try the software on, but it has to be born in mind that it does not have
timing information so it does not show how fast the answers are computed.

As can be seen in the graphic on the right, the modelling stack requires several technologies
to come together. In the middle are the EDA tools and around them Sondrel wraps its own
custom tool and methodology on to Synopsys tools to create an all-encompassing
environment of the modelling solution.

Various types of modelling

At the lowest level is Dataflow modelling which are programmes that are written in
MATLAB, Python or C/C++ that are intended to capture the steps of an algorithm and what
are the data processing pipelines to take data through to an answer but they do not contain
any timing information.

Loosely timed or fast models are for early software development as they run executable
code but they are not appropriate for architecture exploration because they do not have strict
definition of timing between processes.

Most useful are the Approximately Timed models with a refined version being the Fast
Timed models that are much better because they contain transaction level tracing to trace
the timing of transactions and every transfer in the level of detail required to do architectural
exploration and analysis.

The 10 practical steps to model and design a complex SoC

White Paper Page 7 of 14

At the highest, most detailed level are the Cycle Accurate RTL simulation models but this
is not appropriate for architectural exploration as it is too slow as they model all signals at
every clock event.

Why do we need performance exploration

Typically, IP blocks are developed in isolation (top right illustration) but when a block is
integrated into an SoC, there are other hardware blocks that also generate their own traffic
profile and pattern (bottom right illustration). These impose a restriction on interconnect
structure and the resources of the memory components. Performance exploration is used to
decide on an appropriate size for the interconnects and memory subsystem by modelling the
memory traffic patterns that are generated by all the subsystems as if they were running on
the real system to a reasonable approximation. This enables the impact on the memory
controller to be seen well in advance of the hardware or software being available which gives
an indication of what the performance of the system will be well in advance that can help with

the design and further downstream flows as the work progresses.

The 10 practical steps to model and design a complex SoC

White Paper Page 8 of 14

10 Steps to Architecture Success

The complex task of modelling becomes manageable by breaking it into stages and then

refining each stage with greater level of detail which can reduce the number of options that
have to be considered. Each model phase enables this to be done to hone the focus as the
increasing level of detail enables drill down to specific issues. This elimination process
ensures that resources such as simulation time are not wasted on what would be dead ends
and instead used on the reduced data set. At all times, issues must be considered in logical
order so that cause and effect is clear and issues are fixed before advancing to the next
iteration to reduce wasted design effort

The first four steps can be done on paper or on a spreadsheet by calculation to try and
understand what are the input/output dataflows into the SoC and what their characteristics
are.

The last six steps are simulation based where software models are constructed and
simulations run to generate results that inform about the system.

The 10 practical steps to model and design a complex SoC

White Paper Page 9 of 14

Step 1: System OI Analysis

This determines what the data is and what are the I/O constraints such as burstiness,
latency, timing, and data formatting to decide on the buffer requirements that is captured in a
spreadsheet.

Step 2: Processing Analysis

This breaks the processing down into sub-tasks and groups parts of the SoC into common
pieces of functionality. In the illustration, MPEG decode and image analysis are parts of an
algorithm which needs to be performed on input data to generate the output.

The 10 practical steps to model and design a complex SoC

White Paper Page 10 of 14

Step 3: IP Analysis

This step identifies what third party IP blocks will be required to perform the steps of an
algorithm and how much memory and compute power they require from their datasheets that
can be fed into the modelling environment to give a more accurate representation of what all
the IP blocks will be doing.

Step 4: Data Interchange Analysis

This covers the method of exchanging data in between parts of an algorithm such as on-chip
SRAM or external DDR memory as well as FIFO which are small spaces of memory on chip.
The decision between SRAM and DDR depends on the size of the data and how often it
needs to be accessed with large pieces of data going to external memory and small pieces of
data to SRAM or FIFO.

The 10 practical steps to model and design a complex SoC

White Paper Page 11 of 14

Step 5: Workflow Model (Transactional)

Now a software representation is created of what the different stages are. The first three blue
blocks of the illustration in step 4, which form the conceptual view of the algorithm, are
translated into the green boxes that represent the actual simulation objects and correspond
to the different software stages of the algorithm. These require settings such as latency and
processing cycles, and are joined by objects known as channels that indicate what the
sequencing is.

Step 6: Simulate to verify processing

Having constructed all the simulation objects for the full algorithm, simulations can be run to
see if the right sequencing of the algorithm has been captured. This can be visually checked
as per bottom right image by using the visualisation tools that are available in the modelling
environment.

The 10 practical steps to model and design a complex SoC

White Paper Page 12 of 14

Step 7: Quantify Data Interchange

This is the next step on from the green blocks in step 5 to converge onto models of the
hardware platform with VPUs (Virtual Processor Units) that will run the software of step 5,
each with their own local memory. Here the interface timing can be considered and
communication domains defined with their assigned channels and evaluated. It also enables
the configuration of the VPUs to be verified as correct.

Step 8: Data Physical Exchange

Here the memory that was available to each VPU is now remodelled as being connected to
external memory via a common memory controller. This gives a more accurate
representation of the connectivity of all the VPUs and memories in the final system.

The 10 practical steps to model and design a complex SoC

White Paper Page 13 of 14

Step 9: Implement Interconnect

Now the interconnect fabric is added and instead of the direct connections between the
VPUs and the memory controller, these are replaced by the interconnect fabric and the
effects of this on the timing and performance evaluated. The interconnect fabric is then
adjusted to meet the performance required with previous stages being redone to achieve the
required results.

Step 10: Optimize Performance

The 10 practical steps to model and design a complex SoC

White Paper Page 14 of 14

Now, with a good working model, by simply adjusting settings, various simulations can be run
to identify bottlenecks, what constraints there are in the system, and which parameters
should be adjusted to improve the throughput and reduce the latency of the SoC. These take
a few minutes to an hour to run so that it is very easy and quick to test variants.

Further information about Sondrel can be found at www.sondrel.com

Sondrel is a trademark of Sondrel Limited

Arm is registered trademark of Arm limited

Synopsys is a registered trademark of Synopsys, Inc.

All other trademarks are acknowledged.

http://www.sondrel.com/

